Additional Material for Circular Motion

Uniform circular motion: It is a motion of an object on a circular path with a constant speed.

Below are a few examples of circular motion.

Ex: 1) Motion of the earth around the sun.

- 2) Motion of the satellites around the planets.
- 3) Motion of the blades of a fan.

In uniform circular motion, magnitude of velocity is constant but its direction changes continuously. Since there is a change in the direction of velocity we can say that the object is being accelerated.

Below are the formulae to calculate:

Linear velocity: $v = 2\pi r/t$

Angular Velocity : $\omega = v/r$

Centripetal Acceleration: $a_c = \omega^2 r$

Centripetal Force: $F_c = mv^2/r$

Q1. Consider the white point as a toy car of mass 1 Kg that moves on a circular track of radius 8.00 m in 10.0 seconds. Calculate the centripetal acceleration of the car.

Solution: given data: mass = 1 kg

radius = 8 m

time period = 10 s

Formula to calculate linear velocity:

$$v = 2\pi r/t$$

= 2 x 3.14 x 8

10

= 5.024 m/s

Formula to calculate Angular velocity:

$$\omega = v/r$$

$$= 5.024/8$$

$$= 0.628 \text{ rad/s}$$

Using the values of angular velocity and radius we can calculate centripetal acceleration.

$$a_c = \omega^2 r$$

$$= (0.628)^2 \times 8$$

$$= 3.15 \text{ m/s}^2$$

Answers to the Assignment Numericals

1)
$$v = 1.25 \text{ m/s}$$

$$\omega = 0.628 \text{ rad/s}$$

2)
$$v = 7.85 \text{ m/s}$$

$$\omega = 0.78 \text{ rad/s}$$

$$F_c = 12.32 \text{ N}$$

3) F_c = 4.85 N (Hint: change the values according to numerical in the App. Use the values of velocity and radius from the App to calculate centripetal force.)